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ON THE EXISTENCE AND REGULARITY
OF FUNDAMENTAL DOMAINS
WITH LEAST BOUNDARY AREA

JAIGYOUNG CHOE

Introduction

Let M be a three-dimensional compact smooth Riemannian manifold. Let
®y be the set of all fundamental domains of M with Lipschitz boundary
in M, the universal covering space of M. Then it is a question of basic
interest to see whether one can find a fundamental domain in ®, with least
boundary area among all fundamental domains in ®;. Moreover, passing to
subfamilies of @, one can ask similar questions: Let ®; be the subfamily of
®( consisting of all fundamental domains of M which are homeomorphic to
an open ball, and let ®; be the subfamily of ®; consisting of all fundamental
domains of M whose closures are homeomorphic to a closed ball, Can one
find a fundamental domain in ®,, or ®;, whose boundary area (counting
multiplicity) is the minimum among all fundamental domains in ®;, or ®,?
These problems were proposed by Michael H. Freedman.

In this paper we answer the first problem, the case of @, in the affirmative
(Theorem 3). We then discuss the second problem, the case of ®,, and derive
an affirmative answer under the assumption that M is irreducible, that is,
every embedded sphere in M bounds a ball (Theorem 5). The third problem,
the case of ®,, remains open. Besides the existence of minimizing fundamental
domains in $g and Py, we also obtain the regularity of the boundaries of these
minimizing fundamental domains (Theorem 4). If we define a spine to be a
subset of M whose complement in M is homeomorphic to an open ball, then
the second problem is equivalent to finding an area minimizing spine of M.

For a two-dimensional compact Riemannian manifold M? the problem is
much simpler to solve and easier to visualize. In fact, any fundamental domain
of M? with least boundary length among all fundamental domains is always
homeomorphic to an open disk. Furthermore the boundary of a minimizing
fundamental domain consists of geodesic segments of M? meeting each other
at 120° angles, and the number of edges and vertices are both 6 — 6x(M)
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(Proposition). The simplest example is the flat torus 72. A minimizing
fundamental domain of T? is not the square of Figure 1 but the hexagon of
Figure 2 (see Appendix, 1). This is because a triple point is area minimizing
under Lipschitz map without counting multiplicity whereas a quadruple point
is not.

120°
45°

FIGURE 1 FIGURE 2

The methods used in this paper are those of geometric measure theory.
In showing the existence of a minimizing fundamental domain for the first
problem, we consider the characteristic functions of fundamental domains
and use the compactness of functions of bounded variation. The existence
for the second problem follows from the compactness of varifolds, viewing the.
boundaries of fundamental domains as 2-varifolds.

Throughout this paper we apply the cutting and pasting process exten-
sively. In this process, however, in order not to change the topology of funda-
mental domains, we must assume that M is irreducible for the second problem.
An example, the standard S2 x §!, indicates that irreducibility is necessary:
A fundamental domain $? x (0, 1) in the universal covering space S x R! of
82 x 8! has least boundary area among the elements of ®; (see Appendix,
2). But 9(S% x (0,1)) is also the varifold limit of {9F)}, where the F’s are
fundamental domains in ®; obtained by cutting out a slanted rod with thick-
ness ek, €x — 0 as k — oo, which connects $% x {0} to S% x {1}, translating
and pasting the rod to $% x (0,1) along S$% x {1} (Figure 3). {F%} is also a
minimizing sequence in ®,.

The main difficulty lies in controlling unbounded fundamental domains.
Indeed if M is noncompact, then the fundamental domains of M may be
unbounded. Moreover, since an unbounded thin spike may have arbitrarily
small boundary area, we can have a minimizing sequence of fundamental do-
mains which are unbounded in M. This bad minimizing sequence is to be
replaced by a uniformly bounded one by applying a cutting and pasting pro-
cess (Theorem 2). To do so, we should verify that both ®; and ®; are closed
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FIGURE 3

under cutting and pasting process, and that the boundary area of fundamen-
tal domains does not increase substantially after cutting and pasting. These
are verified through an appropriate adaptation of [4] to our setting. This
adaptation requires a great deal of care.

Once we have uniform boundedness of the minimizing sequence we can get
the desired regularity results for the first problem as in [13]. For the second
problem, we need to modify carefully the arguments in [13] to preserve the
topology of fundamental domains. Thus we show that the projection into
M of the boundary of a minimizing fundamental domain consists of minimal
surfaces meeting each other at equal (120°) angles along Holder continuously
differentiable curves, like compound soap films, and four such curves meet
each other at isolated points at which six sheets of minimal surfaces meet at
equal angles. It should be mentioned that from [8] we can obtain analyticity
of the singular curve in case M is isometric to a Euclidean 3-space R3, and
higher regularity in general.

Now we mention two outstanding problems: (i) What is a fundamental
domain of a flat cubic torus T2 with least boundary area? (See Appendix 3.)
(ii) If the curvature of M is nonpositive, does the minimizing fundamental
domain of M in ®g or ®; also belong to 57 Is the minimizer star-shaped?

Finally, we wish to express our sincere gratitude to Richard M. Schoen, who
introduced us to geometry and analysis. Also we would like to thank Michael
H. Freedman and Leon Simon for their interest and helpful discussions.

1. Terminology

In general, we will use the definitions and notation of [7] and [13] through-
out.
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(1) Let M be a three-dimensional compact smooth Riemannian manifold,
M the universal covering space of M, and p the projection map from M onto
M.

A fundamental domain of M is an open set F' in M satisfying

Vol(F) = Vol(p(F)) = Vol(M).

Let ®g denote the set of all fundamental domains of M with Lipschitz
boundary and let ®; denote the set of all fundamental domains in ®, which
are homeomorphic to an open ball. Then, for any F € &1, M ~ p(dF) is
homeomorphic to an open ball. A subset S of M will be called a spine of M
if M ~ S is homeomorphic to an open ball. Note that, for any F € ®;, p(9F)
is a spine of M and conversely, for any Lipschitz spine we can find F € &,
with p(0F) = S.

A fundamental domain F € &, will be said to be reduczble if there exists a
proper subset S of p(dF) such that S has Lipschitz boundary and M ~ S is
still homeomorphic to an open ball. Let ® denote the set of all fundamental
domains in ®; which are not reducible.

A fundamental domain F € ® will be said to be adequate if F is homeo-
morphic to a closed ball, otherwise F will be said to be inadequate.

Consider the subset Rr of 0 F which consists of ¢ € F with the property
that there is an r4 > 0 such that for any geodesic ball G,(p(g)) with center
p(q) and radius r < rq, p(F)NG,(p(q)) consists of two components only. Each
component of Rr will be called a face of F. Any subset of 3F ~ Rp which is
homeomorphic to an open interval (0,1) will be called a multiple curve of F.
Any point of 0F ~ Ry at which at least three distinct multiple curves of F'
meet each other will be called a multiple point of F.

For F € &g, 6 F denotes p(GF). The image under p of face, multiple curve,
or multiple point of F will be called face, multiple curve, or multiple point of
OF respectively.

For any set K C M, define K = {z € M: p(z) € K}.

(2) B™*(p,r) and U™(p,r) will denote respectively the closed and open
geodesic balls with radius » and center p in M"™ or R". B, B° will denote
B3(0,1), U3(0,1) in R3 respectively.

We define D = {z € R?: |z] < 1}.

(3) For each r > 0 we define u,: R® — R", u,(z) = rz, z € R", and for
each p € R™ we define 7,: R* — R"”, 7,(z) =z — p, z € R"™.

(4) We say that S is area minimizing in an open set U C M™ under a
Lipschitz map provided

H™(S) < H™(4(5))
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whenever ¢ is a Lipschitz map on M™ such that ¢ maps U into U and leaves
M ~ U fixed, where H™ denotes the m-dimensional Hausdorff measure.
A varifold V in M™ is said to be area minimizing under diffeomorphism
provided
M(V) < M(g4V)

whenever ¢ is a diffeomorphism of M™, where M denotes the mass.

(5) Define Y! C R? to be a union of three half-lines joining at the origin
with 120° angles to each other. Define Y C R® by Y = (Y! x R')n B3(0,1)
{see Figure 4).

Define 7' C R? as the intersection with B3(0,1) of an infinite cone from
the origin through the 1-skeleton of a regular tetrahedron with its center of
mass at the origin (see Figure 5).

S

FIGURE 4 FIGURE 5

(6) For S a 2-rectifiable set, define o(S) as the singular set of S, that is,
o(S) is the set of points in S at which there is no approximate tangent plane
to S in G(3,2), or ©%(H?.S, z) is not one. Define oy (S) C 0(S) as the points
of density 3/2, and o (S) C o(S) as the points of density 7~ 3 cos™}(—1/3).
Define R(S) = S ~ o(9).

If V is a 2-varifold we define oy (V) = oy (spt ||V |]), o7 (V) = or(spt |V |)),
R(V) = R(spt[[V]}), and o(V) = o(spt [V]).

(7) Suppose S is a surface homeomorphic to D or 3B. A compound Jordan
curve in S is a connected union of a finite number of Jordan curves in S.
Given a compound Jordan curve C in S, a Jordan curve C; C C is said to
be an individual Jordan curve of C if there exists a set X € § ~ C with
X~ D and 83X = C;. In case S ~ D, a subset Cz of C is said to be an
outermost Jordan curve of C if there exists an annular domain Y € S ~ C
with Cy = 9Y ~ 88.

(8) Recall that ®¢ consists of fundamental domains of M with Lipschitz
boundary. Hence, given F' € ®;, there exists a family {S;}ie; of pairwise
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disjoint subsets of 6 F' (= p(8F)) with U,c; Si = 6F such that for all i € 1, S;
is C! up to its boundary and 85; is a Lipschitz curve. Let X be a C! surface
in M. Then we say that 6 F is transversal to X if S; and 3S; are transversal to
X for all 7 € I. It follows from Sard’s theorem that for almost all r < (M),
the injectivity radius of M, §F intersects dB%(p,r) transversally and each
component of §F N dB3(p,r) is a compound Jordan curve on dB3(p,r).

2. Replacement theorem and rectifiability

The following theorem guarantees that if U is an open convex subset of M,
then we can always replace F € ® (respectively ®) by F' € & (respectively
®) in such a way that §F satisfies an isoperimetric inequality in U.

Theorem 1 (Replacement Theorem). (1) Given U ~ B° with C! bound-
ary U in M, and F € &g with 6 F intersecting OU transversally, there exists
F € ®g such that

(1) 6F ~TU =6F ~ T,

(i) 6F NT c U and H2(6F NT) < c¢(H'(6F N AU))? for some ¢ > 0
depending on U.

(2) Suppose M is irreducible. Given U ~ B® with C! boundary 8U and
F € ® with 6F intersecting OU transversally, there exists ' € ® such that

(i) 6F ~U C 6F ~ U;

(ii) SFNU isa disjoint union of surfaces homeomorphic to D; of U 1s
convez, then

(i) 8FNU is a disjoint union of area minimizing surfaces homeomorphic
to D;

(iii) H2(6F NU) < c(HY(F NAV))? for some ¢ > 0 depending on U.

For the proof of Theorem 1 we need the following two lemmas.

Lemma 1 (Isoperimetric Inequality). (1) Let Co be a union of compound
Jordan curves on a C' surface S ~ OB in M and let Yo, - ,Y; be open
components of S ~ Co. Suppose maxo<;i<i{H?(Y;)} = H?(Yp). Then there
ezists ¢ > 0 depending on S such that H2(S ~ Yy) < c(H*(Co))2.

(2) Let C be a compound Jordan curve on a C! surface S ~ 0B in M
and let Xo,--- ,X, be the open components of S ~ C where every X; is
homeomorphic to D. Suppose maxo<i<n{H?(X;)} = H?*(Xo). Then there
exists ¢ > 0 depending on S such that H*(S ~ Xy) < ¢(H'(C))?.

Proof of Lemma 1. Croke [5] showed that there exists a constant ¢ depend-
ing on S such that whenever E is a region on S with £ =~ D, then

min{H*(E), H%(S ~ E)} < ¢(H'(3E))>.
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We prove (2) first. Let # = H?(S) and o = H?(X,). First suppose o < 3/2.

Then
HY(S ~Xo)=p-a< i - (\fﬁ)
(E W )

In case a > 3/2,
H?(S ~ Xo) < ¢(H(3Xo))* < c(H'(C))2.

(1) Suppose Y C S is a multiply connected open set with H2(Y) < (/2.
First, assume there exists a component Z of S ~ Y such that Z ~ D and
H?%*(Z) > /2. Then

H*(Y) < H*(S ~ Z) < c(H'(32))” < c(H'(9Y))>.

Second, assume H?(Z;) < 3/2 for each component Z; of S ~ Y. Then

) < Zm ) < E (H'(02:))* < C(ZHI(azi))2 = c(H'(3Y))*.

Therefore, in either case, H2(Y) < ¢(H(8Y))2.
Let o9 = H?(Yp) and suppose o < 8/2. Then, as in (2), we have

1 2
H*S~Yy) <e (% ; H21m) (K)H2(Y))

Since H2(Y;) < ¢(H(3Y;))2 for all £ =1,--- 1, we have

H*(S ~Yy) < ( EH‘ ay) = ¢(H(Co))%.

If ag > /2, then

(S ~ Yo) ZH2
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where {Z;} is the set of all components of S ~ Yp. Since Z; ~ D and
H?*(Z;) < B/2, we get

2
H(S ~Yy) < Z:c(yl(azj))2 < c( ZHI(BZJ-)> < ¢(HY(Cp))2.

Lemma 2. (1) Let F € ¥, and assume U =~ B° has C! boundary OU
which is transversal to 6F. Then there ezists F' € @ with 6F ~U = F ~ U,
§FNT c U such that dU ~ (6F NT) is a component of U ~ §F.

(2) Assume M is irreducible, F € ®, and E is a piecewise C! surface
in M with E ~ D. If §F NE is a compound Jordan curve disjoint from
OF, then there exist F' € ® and a set W ~ B° in M such that E C W,
SFNOW =6FNE, and §F C (6F ~ W)UE

Proof of Lemma 2. (1) Let Y be a set in F' such that p(Y) is a component
of U ~ 6F. Let U C M be a component of U with Y C 8U. Define
F = (F~U)UUUY. Then we see that F is a fundamental domain of M in
®y. Obviously 6F ~U = 6F ~TU and 6F NT = oU ~ p(Y).

(2) Since F NOE = & and M ~ 6F =~ B°, there exists a set J ~ D
in M such that F NJ =@, 8J = OE, and JNE = E. Then JUE is
homeomorphic to a sphere, and hence by the irreducibility hypothesis there
exists a set W ~ B° in M with W = JUE. Note that FNoW =6FNE.
Now let W; be the component of W with oW, D |Fﬂj [, and define F; € ®¢ by
Fy = (F ~ W)UW;U(FN3W,). Then, since each component of F ~ p~1 (W)
is homeomorphic to B°, so is each component of Fy. Let us assume that Uy is
the component of F containing F NoWy, and Uy, -+ - ,U,, are the remaining
components of Fy. Then it is easy to see W Np(U;) ~ D, i =1,--- ,m
Hence we can find U o, a component of p~!(p(U;)), with 8W; NU; o =~ D for
each i =1, -+ ,m. We thus paste each U; o to Up along OW; NT, to get a
fundamental domain F' € ® with 6" C (6F ~ W)U E, and hence the proof is
complete,.

Proof of Theorem 1. (1) Let Y be a set in F' such that p(Y') is a component
of U ~ 6F with H?(p(Y)) = max{H?%(Y;)}, where the maximum is taken
over all components Y; of U ~ 6F. Then Lemma 1(1) and Lemma 2(1)
prove (1).

(2) Let K;, ¢ = 1,-.-,1, be the components of §F NU and let C;;, j =
1,--- ,m;, be the disjoint compound Jordan curves such that K; N U =
U;"'l Cy; for each 4. Finally let X;;, € 0U, 1 £ k < nyj, be such that

Xijk = D,0U ~ Cy; = Uk 1 Xijk, for each 7 and j. Renumbering if necessary,
one can assume max<x<n,, { H?(Xijz)} = H?(Xy;1) for each ¢ and j. Define
Y, ; =0U ~ Y.ijl. Then Y;; =~ D. Suppose Yy;NY,y # & forsomel < a,c </,
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1<b<my,and 1 < d < mg. Since Cy,NC.q = &, we have three possibilities:
Yoo C Yea, Yoo O Yeq, Yoo UYeq =0U.

The third case is not possible since otherwise we would get two contradictory
conclusions: H?(Xap1) < H2(Xcq1) and H?(Xgp1) > H?(Xcq1). The first two
cases give us a partial ordering in the family {Ci;}1<i<i,1<j<m, in a standard
way, i.e., Cop < Cyq if and only if Yy, C Y.4. Hence by choosing a minimal
element successively from {C;;} one can get an ordered family {Cq}o<a<nr
such that {Ca}OSaSH = {Cij}lﬂiﬁlylﬁjsmi and C, < Cg only if « < .
Define Ya =Yy if Ca = Cij.

Let § = ming<qzp<n{dist(Cy,Cs)}. Then we can find Zy C AU such
that Z ~ D, Zy D Yo, and HD(Zy,Y,) < 8. We thus apply Lemma 2 with
Zy in place of E, to give I € ® and a set Wy &~ B° such that Zy C 8W,,
§F NOWy = 6F N Zo, and 6F C (6F ~ W) U Zo. Wy plays the role of
eliminating the piece of 6 F' which lies either inside U or outside U. Hence we
consider the following two cases:

Case 1. Wy eliminates the piece of 6 F which lies outside U, i.e., there is an
open set Vy containing Yy such that (6F ~ 6F) NVy C M ~ U. Taking points
of SFNY into U we obtain 6Fy, Fy € ®, with §F; NAU = (6F NAU) ~ Y,
(C(6FNAU) ~ Cp). Define Uy =U.

Case 2. Wy eliminates the piece of 6 F which lies inside U, i.e., there is an
open set V containing Yy such that (6F ~ §F)NVy c U. Holding the set
6F ~ Y, fixed, and taking points of §-'NY, into U we obtain 6Fy, F; € ®, with
6FyNAU C §FNAU. Note that if Ky is the component of § F; NU containing
Cy, then Kg ~ Cy = U:';II Zy;, where Z; ; =~ D and U:’;ll 6Z17.,' = Cy. Thus
we can find an open set U; C U such that U; ~ B°® and 6F; N (U ~ U4) =
U:ill Z;1. Hence 6F1 N oU, = ((5F1 N aU) ~Co COFNIAU ~ Cy.

In either case, note that 6 F; N OU; has fewer components than 6 F N AU,
more precisely, §F; NoU; C (6FNAU) ~ Cy. We also have §F) ~ U C 6F ~
U.

Now that we “eliminated” Cy we again apply the same argument (cutting
and slight perturbation) to 6F; N U; to eliminate the remaining C,’s. First
6F; N OU; can be viewed as a subsequence of §F N OU. Let Cq4, be the first
element of this subsequence. Clearly C,, # Cy. Define Yy, o C 0U; by

Vo o { (Ya, ~ (8U ~ 8UL)) U (8U; ~ 8U) if Yy, D Yo,
o Yo, if Yo, NYy=a.
Then Y4, ,0 & D and hence we can find Z; C 0U; such that Z; ~ D, Z; D

Y, 0, and HD(Z1,Y4, 0) < 8. Now we can apply Lemma 2, with Z; in place
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of E, to give F, € ® and a set W1 ~ B° such that Z; C OWy, 6F; N oW, =
8F1 N Zy, and 6Fy C (6F; ~ W)U Z;. Here again we consider the following
two cases: :

Case 1. (6Fy ~ §F1) NVy € M ~ U, for some open set V; containing
Ya,,0. Taking points of §F3 NY 4, o into U we can obtain 6F,, F; € ® with
5F2 ﬂaUl = (5F‘1 08U1) ~7&1. Define U2 = Ul.

Case 2. (6F; ~ 6F1) NV, C Uy. In this case holding the set §F) ~ Yy,
fixed, and taking the points of §Fi N Y,, into U; we can obtain 6 F, Fy € 9,
with 6Fy, NOU; C §F; N 8U;. Now we can find an open set Us C U; such
that U, ~ B°, and the component of §F; NU; containing C,, is contained
in Uy ~ U,. Note that §Fy N (Uy ~ Us) = U Z24, where Z; ~ D and
Uiz 022, = Ca,.

In either case, § F; N @U; has fewer components than § F1 NdV7, i.e., 6Fo N
OUs C (§F1 N3Uj) ~ Cy,. Note also that §F2 ~ Uy C 6F; ~ Uj.

Continuing the above procedure we can obtain for each j =1,--- ;ng — 1,

Co; withO0=ap<o3 < -<aQne—1, No—1<n
(i.e., {Cq, }o<j<no—1 is a subsequence of {Co }o<a<n);
(2.1) Ujp1 withUjy1~#~B°andUD U1 DUy D -+ D Up,; -
Yo; 0 COU; with Y, 0~ D, and
Vo oo { (Ya, ~ (BU ~ 8U;)) U (8U; ~ BU) if Yo, D Yo
0T Yo, i Ya,NYa, , =@ |

-1

Z;jcoU; withZ;~D, Z; > 7%,0, and HD(Z;,Ya,0) < 6;
Fj+1€q) with 5FJ'+1~UJ'C5FJ'~UJ' (UOIU,F():F),
such that we have the following additional properties:

Cajacaj+1»‘ T ’Cano—l C 5FJ ﬁa[JJ’

8Fj11N0U;41 C (8F; NAU;) ~ Ca;;

either U; 1 = Uj or U4 is a proper subset of U, and
mjt1

(2.3) SF; 11N (U; ~Ujyy) = U Zj+1,is
=1

(2.2)

mj+1
where Zj+1,i ~ D and U 3ZJ‘+1‘1‘ = Caj-
=1
Note that 0F,, N Uy, = I, so that
§Fpg NU = [(6Fny ~ Upg) U (6Fng NUpo)|NU = (6Fpy ~ Upy) N U
= [(5F‘no ~ no—l) n U] U [5F‘ﬂo N (Uﬂo-l ~ Uﬂo)]‘
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Using (2.2) repeatedly we thus have

6Fn, NU C [(6Fno—1 ~ Ung—1) NUJU [6Fng N (Upg—1 ~ Un,)]
1
= [(6Fno—1~ Uno—2) NUTU | J[6Fno—5 N (Ung—j—1 ~ Uno—;)]
7=0

1
- [(6Fno—2 ~ Uno—2) n U] U U [6Fno—j n (Uno—j—l ~ Uﬂo—j)]
=0

2
= [(6Fno—2 ~ Upo—3) NUJU U [5Fno—j n (Uno—j—l ~Unqg-3)]
Jj=0

= [(6F1 ~U)NUJU U [6Fro—5 N (Ung—j—1 ~ Uno—5)]
7=0
no—1
= |J [6Fjz1 0 (U; ~ Uj11))-
J=0
Hence (2.3) gives §Fuy NU C UG, U7 Zg, i, where {81, , B, } = {52 Uj
is a proper subset of U;_1}, n1 < ng, Zi,; is homeomorphic to D, and
Uk 8Zk,; = Ca,_,- In fact, renumbering j if necessary, one can easily have
ny Mg
(51;‘,,1‘J NU = U U Zkﬂ',
k=1i=1
where ny < n; and {j: Ca;_, C 6Fn, NOU} = {1,2,--- ,nz}. This proves
(ii) if we let Fp, = F. (2.1) and (2.2) prove (i).

Now we assume U is convex. The next step in the argument involves
replacing each Zi; by an area minimizing surface Zk i ~ D with BZk i =
07 ;. Since the family {Z;c i} is pairwise disjoint, we can get a fundamental
domain F' € ® such that §F' ~ U = 6F,, ~ U and

ne Mg
(2.4) sFnU = {J U 2k,
k=14=1
. which proves (ii)’.

It remains to prove (iii). Let X ; C U be such that Xy ; ~ D, 0Xy; =
8Zxs, and H%(Xy;) < H?(QU ~ X ;). Then from the way we defined Y,
from C, (or Y;; from C;;) we deduce that X 1, Xk 2, -+, Xk,m, are pairwise
disjoint and

mg
H*(Xy ;) < H? (BU ~U X,m-)

=1
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for each 7 =1,--- ,my. Hence by (2.4)

n2 Mg n2 Mg
2EENU) =Y Y H (Zea) S D D H (Xi)
k=11=1 k=11i=1

nz Mg 2 72 Mg 2
8o @) - ()
k=1 i=1 k=1 i=1
n2
=" e(H (Cay_,))? < c(H' (F N OU))*.
k=1
This completes the proof of Theorem 1.

The following lemma is a generalization of the Filigree Lemma in [4]. Here
the word “filigree” means (very roughly) a collection of threadlike protrusions
from a surface. For example, if F € & satisfies H2(6F N B3(p,r)) = er?,
where ¢ is small, then § F N B3(p,r/2) would be classified as filigree.

The following lemma will enable us to “cut off” such sets under appropriate
circumstances. _

Lemma 3 (Filigree lemma). Let Uy = B3(p,rt), pe M, r>0,0<t<
1, and suppose U; is convex for all 0 < t < 1. Suppose also that there is a
constant ¢ < oo such that, whenever E C OU; is a set homeomorphic to D,
then min{ H?(E), H*(8U, ~ E)} < ¢(H'(3E))2.

Finally, suppose F € &g and € > 0 are such that

(2.5) H?*(6F) < H*(6G) +¢ for any G € ®y.
Then H2(6F NU;) < € whenever t <1 — (2/r)y/e\/JH2(6F NUy).

Moreover we can obtain the same result for F € ® with the additional
assumption that M 1is irreducible.

Proof. We will prove the lemma in the case of ® only since the proof for
®y is basically the same. By Sard’s Theorem 6 F intersects QU transversally
for almost all t € (0,1). Then for almost all t € (0, 1) we can apply Theorem
1, with U; in place of U, to give F' € ® such that

(2.6) 6F ~ U, C6F ~ Uy,

(2.7) H2(6F NUy) < c(HY(6F NaUy))2.
y (2.5) we have
H*6F NU;) + HX(6F ~U;) < HY(6F NU,) + H2(6F ~ U) +¢,
which together with (2.6) implies ‘
H*(6FNU,) < HX6FNU,) +¢



FUNDAMENTAL DOMAINS WITH LEAST BOUNDARY AREA 635

Then (2.7) gives

H2(6FNU;) < c(HY(6F NAUL))? + ¢
Since (2.6) yields §F' N U, c 6F N AU, we have
(2.8) HY(§FNU,) < c(HY(6FNAUy)): +¢

We can now suppose H2(6F NU;) > ¢, otherwise the required conclusion is
trivial. Then let to = inf{t: H2(6F N U;) > ¢} and define f(¢)
H2(§FNU) —g, t € [to,1]. By the co-area formula we see that (2.8) im-
plies'
c
IS @) ae teltol).

Integrating this inequality (using the fact that f(¢) is an increasing function
of t), we obtain

Vi) < VA - 1572,

However f(1) = H2(6FNU,) — e < HZ(6F NU;); hence we deduce

2
1-t< ;\/E\/Hz(éFﬂYl)
That is,
2
to>1-— ;\/E\/Hz(éFﬂ Y1),

and the required result is proved.

With the above filigree lemma we are now able to get the first regularity
result as follows:

First let {Fy} be a minimizing sequence in &y (respectively ®), that is,
H2(6F) < H%(8G) + ¢ for any G € ®; (respectively &), where 5 — 0 as
k — o0o. Then we can apply compactness of varifolds and hence assume, by
taking a subsequence if necessary, that there is a 2-varifold A in M such that
A =limg o0 |6 F|- A is of course area minimizing in M under diffeomorphism
because M(A) < M(¢4A) whenever ¢ is a diffeomorphism of M. Secondly we
want to show that there is a constant cg > 0 such that whenever p € spt ||A||

(2.9) - 8%(l|Al,p) 2 co.

Suppose p € spt |A|| and let ¢ be a constant as defined in the filigree lemma
(obviously such ¢ exists and depends only on M and r). By the filigree lemma
we know that if H2(6F, N B3(p,r)) < r%/(16¢), then H2(6F, N B3(p,r/2)) <
gx. If there is a subsequence {k'} C {k} with H2(6 F,» N B3(p,r)) < r?/(16¢),
then we would have spt|A| N B3(p,r/2) = &, thus contradicting the
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fact that p € spt||A]. Hence for all sufficiently large k& we have
H?(6F, N B3(p,r)) > r?/(16¢), from which we deduce

1
(2.10) 1AI(BY 1) > 7
Thus we obtain (2.9) with ¢y = 1/(16¢). In particular, A is rectifiable by
[1,5.5].

Hence we have proved the following.

Corollary 1 (Rectifiability). Suppose {Fy} is a minimizing sequence in
®g. Then a subsequence of the corresponding varifolds |Fy| converges to a
rectifiable 2-varifold A in M which is area minimizing under diffeomorphism
and has M(A) = inf{H?(6G): G € ®y}. Moreover we can obtain the same
result for F' € ® assuming that M is irreducible.

Lemma 4 (Monotonicity lemma). Let A be a rectifiable 2-varifold in
M which is area minimizing under diffeomorphism of M, and p € spt ||A]|.
Let p be the injectivity radius of M. Then there ezists a function £(r) =
er™, ¢,m > 0, such that the function g: (0,p/2) — R! defined by g(r) =
r=2||A||(B3(p, 7))es() is monotonically nondecreasing.

Proof. Let ps¢(spt || AN B3(p, 7)) be the set of all geodesics from p to the
points of spt || A]|NdB3(p, 7). Then there exists a sequence {1/, } of “shrinking”
diffeomorphisms of M such that 9,(z) = z for all n and z € M ~ B3(p,r),
and

spt || lim (ngA)| N B (p,7) = p3(spt |A]| N 9B (p, ).

Since A is rectifiable, there is a positive H2-measurable function § on N =
spt ||A|| such that

(2.11) A(S) = / 0dH? for any H®-measurable S.
SON

Thus, as in [11, §15], we adapt the notation A = v(N, 8), which is character-
ized by (2.11). Note that for almost all > 0,-N N dB3(p,r) is rectifiable.
Hence a 1-varifold AN 8B3(p,r) defined by

AN 3B3(pv ’I‘) = V(N N 3B3(p1 ’I‘), olaBa(p,r))

is a rectifiable varifold for almost all r.

Define ps«(A N 3B3(p,r)) = v(ps(N N dB3(p,r),8)), where 8(3) = §(z)
whenever Z lies on the geodesic from p to £ € N N dB3(p,r). Then we can
deduce that for almost all r,

Jim (dn g A) (B3 (p, 7) X G(3,2)) = px(A N OB (p,1)).
Define m(r) = ||Al|(B3(p,r)). Since A is area minimizing,
m(r) < [$ng All(B?(p,1)).
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Taking the limit as n — oo, we have m(r) < M(ps¢(A N 3B3(p,r))).
Now we can find a function &(r) = ¢r™, ¢,m > 0, depending on M such
that
M(ps{ANBB*(p,))) < (1+€(r) - M(ANIB(p,1)).

Hence m(r) < (1 + &(r))r - M(A N 8B3(p,7)). Since m/(r) exists and
M(ANadB3(p,r)) < m!(r), for almost all r, we get

m(r) < 21+ Er)rm'(r), ie, Tm'(r) —m(r)(1 ~ () > 0.
It follows that rm(r)£ log g(r) > 0 and hence ¢'(r) > 0.

Corollary 2. Let A be an area minimizing 2-varifold in M obtained as
above and p € spt ||A||. Then tangent cones to A ezist at p; the tangent cones
are cones in R3 and are area minimizing under diﬁeomorphism in R3.

Proof. By the Nash embedding theorem we can assume that M is isomet-
rically embedded in R™ for some n > 3. For convenience of notation we will
assume p = 0. Let {r;} be a sequence of positive radii with lim; o r; = 0.
By Lemma 4 the varifolds

Ai = ((b1/r)#8)(B™(0,m) X G(n,2))

all have bounded masses; since their supports also all lie in a bounded region
of R™, the varifolds {A;} have a convergent subsequence and a limit varifold
u. By definition p is a tangent cone. Now p (B™(0, 1) x G(n,2)) is stationary,
since any diffeomorphism of R™ which would decrease the mass of u would also
decrease uniformly the masses of the varifolds A; for large 7, contradicting the
area minimizing property of A. The density ratios of 4 are uniformly bounded
away from 0 at each point in spt [|u|| since they are uniformly so bounded for
A; by (2.9). Therefore by [1, 5.5] 4 (B™(0,1) x G(3,2)) is a rectifiable varifold
and the support of ||| is a rectifiable set [1, 2.8]. u has density at every point
in its support at least (16¢)~!, since each of the varifolds A; does by (2.10).
Therefore we may apply [1, 5.2, 6.5] to conclude that u is in fact a cone.
Finally p is area minimizing in R™ because any diffeomorphism of R™ which
saved mass in ¢ would also save mass uniformly in the varifolds A; for large
1. u is obviously area minimizing in R3 too.

3. Uniformly bounded minimizing sequence

In order to obtain the desired existence and regularity result for both first
and second problems, it is desirable to replace the given minimizing sequence
of fundamental domains in &y or & by another minimizing sequence (with the
same limit) of uniformly bounded ones in ®p or & without filigrees.
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In this section we use a cutting and pasting argument extensively. In
this process however we have to be very careful not to change the topology
of fundamental domains in the case of the second problem. The following
lemma allows us to cut and paste fundamental domains without changing
their topology.

Lemma 5 (Pasting lemma). (1) Let F be an adequate fundamental do-
main in O. If there exists a face X of F which is multiply connected, then M
is not trreducible.

(2) Let M be irreducible. In case F is an inadequate fundamental domain
in D, there may exist a face X of F which is multiply connected. But then X
can be replaced by a face homeomorphic to D in the following sense: For any
nonnull-homotopic Jordan curve C on X, there exist F € ® and U C M with
U ~ B° such that 3U N6F = p(C), §F ~U =6F ~ U, and 6F NU C p(E),
where F i3 a face ofﬁ‘ homeomorphic to D.

Proof. (1) By assumption there exists a face Y # X of F such that X =
g(Y) for some translation g. Let S; and S; be such that S;, Sy C F, S,
So~D,88 =85 NAFC X, 08 =8 NoF CY, p(0S) = p(0S:), 85;
and 385, are not null-homotopic in X and Y respectively, and S; NS, = &.
Then p(S; N S,) is a closed surface in M homeomorphic to a sphere. Suppose
M is irreducible. Define S = p(S; U Sz) and let K be the component of
M ~ 8 which is homeomorphic to B°. Then S; U g(S2) is also a closed
surface in M homeomorphic to a sphere. Let K be the component of K with
K = 81 U g(Sz). Now since by hypothesis K ~ (F U g(F)) is nonempty, we
can find a translation h such that h(F) C K ~ (F Ug(F)). We then have

H®(M) = H(h(F)) < H3(K) < H*(M),
which is a contradiction. Thus M is not irreducible.

(2) As in the proof of (1) we can find Y, g, S1, S, and K satisfying
the same properties. - Here we assume 05; = C. Since S; U Sy divides F
into three components, K N F is either connected or K N F consists of two
components. Suppose K N F is connected and let L;, Ly be the remaining
components of F ~ (S; U Sz), i.e., F ~ (S1US3) = (KNF)UL; U L.
Clearly Ly, Ly ~ B°. Define Z = F N K. Then we have H2(Z) > 0 and
p(Z) C K. We thus note that since K, p(L;), p(L2) are all homeomorphic
to B°, K Up(L1)Up(L2) Up(S7) Up(Ss) is also homeomorphic to B°, where
87 = 8; ~ 05;. Note also that

M ~ (KUp(Ly) Up(L2) Up(ST) Up(S3)) = 6F ~ p(Z),
since p(Z) C K. Hence §F ~ p(Z) is a spine of M which is a proper subset

of §F. Therefore F is reducible. Since this contradicts the hypothesis that F'
is in ¢, K N F must consist of two components.
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Define again Z = FNK and L = F ~ (S; U S; U K). Then both
- KUp(L)Up(S?) and K Up(L) Up(S) are homeomorphic to B°. Let F; € ®
be such that p(F;) = KUp(L) Up(S?), i = 1,2. Then we see that §F; = M ~
(KUp(L)Up(S?)), 6F; ~ K = 6F ~ K, 6F1NK = p(Sz), and 6 FNK = p(Sy).
Now we can find U > K with U ~ B° and U NéF; = p(C). Finally let F be
either Fy or Fy. Then U and F satisfy the desired properties. :

Remark 1. (1) One can conclude from the above lemma that ® is “closed”
under cutting and pasting provided M is irreducible: Any S C F with S ~ D
and SNJF = 3S cuts F into two components, V; and V3. Suppose E;, E3
are faces of F with E; C V;, ¢ = 1,2, and E; = g(E3) for some translation
g. We then translate V, via g and paste g(V2) to V; along E;: The resulting
fundamental domain F' = Vi U g(V3) U E; is homeomorphic to B° by (1) of
the above lemma in case F' is adequate, and by (2) in case F is inadequate.
Hence F' € ®,. Since F may be reducible, we may have to eliminate the ap-
propriate face (redundant face) of F' to obtain a fundamental domain which is
not reducible. Figure 6 illustrates two pathological cases; an inadequate fun-
damental domain with an annular face and a reducible fundamental domain
with a redundant face (review terminology (1)).

FIGURE 6 (in M)

Figures 6(a) and 6(b) are basically the same pictures of a part of §F in M
which is topologically a punctured torus with two disks X and ¥ added. The
two shaded disks, X and Y, are faces of § F. F is inadequate since F has two
solid handles corresponding to the interior and the exterior of the (punctured)
torus. X NAY (= {p}) is a multiple point of §F, and X UJY ~ {p} is the
union of two multiple curves of § F. The face of 6§ F on which the dotted circle
(= 8Sp) lies is homeomorphic to an annulus. In Figure (b) So cuts M ~ 6F
into two components, U and M ~ (6 FUU). So we paste U to M ~ (§ FUU)
along AU ~ (X U Sp) to get a fundamental domain F. But F is reducible
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since the face Y of 6F is redundant (i.e., §F' ~ Y is still a spine of M). The
fundamental domain F' with §F' = 6F ~ Y will then be not reducible, or
F’ € ®. On the other hand, Sy cuts M ~ §F intoW DU and M ~ (§ FUW).
Although W has an annular face W ~ (X U Y US;), we can paste W to
M ~ (§F UW) along the annular face and eliminate (i.e., fill up) X and Y to
obtain F' € ® with §F = [§F ~ (8W UY)]US,;. This illustrates Lemma 5(2).

(2) Unlike ®, ®; is not closed under cutting and pasting: Let F be a
fundamental domain of M in ®;. Suppose E C F, E =~ D, and 0F C OF.
Then E cuts F in two components U and V. Suppose X, Y, Z, W are faces
of F with X, Y C 8V and Z, W C 8U such that Z = 7(X) and W = 7(Y)
for some translation 7. Then UUT(V)U Z is a fundamental domain in & but
not in ®, since the closure of U U (V) U Z is topologically a solid torus, as is
illustrated by Figure 7.

ZA (v o CED

FIGURE 7 (in M)

Theorem 2 (Boundedness theorem). Suppose {Fi} is a sequence in ®
such that H2(6F;) < H%(6G) + & for any G € &g, where g, — 0 as k — oo.
Then {F} can be replaced by another minimizing sequence {F{} in ®¢ which
s uniformly bounded in M. Moreover we can obtain the same result for a
minimizing sequence in ® if M s irreducible.

Proof of Theorem 2. We will prove this theorem in the case of ® only, and
then we will be able to see that the same argument is valid for the case of ®g
since the cutting and pasting method in @y (Lemma 2(1)) is much simpler
than that in ¢ (Lemma 5, Remark 1(1)).

In this proof we concern ourselves mainly with homothetic expansion and
the cutting and pasting argument. Therefore we prove the theorem first as-
suming that M is locally isometrically in R3, and later we shall see that the
theorem in general can be proved similarly by using the exponential map.

Suppose p = 0 for convenience. We write

K,, = {z € B30,p): dist(z,spt||ul) < o}.
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By definition of u, we know there is a sequence {ry} — co such that y, xA —
@ as k — oo. By (2.10) it is then clear that for any oo € (0,1) we can find r
such that

(3.1) B*(0,1) N5pt [ltr Al € Ki,g02-

Define J, o = U3(0,p) ~ K, o and Ls = {z: © € Jy 5,2, dist(z,8J1 50/2) =
6} for § > 0. Then from (3.1) and the co-area formula it follows that for
almost all o € (00/2,1/2), H (r(6Fx) N Ly—gq/2) — 0 as k — oo. Thus
for any given n > 0 we can assert that, for sufficiently large k, there is a
o1 € (3/409,00) such that

(32) Hl (ﬂr(ﬁFk) n Lo'k—ao/2) < n.

We can also arrange, by Sard’s theorem, that u,(6Fk) intersects Ly, _o,/2
transversally. Now we claim the following lemma.

Lemma 6. For any oo € (0,1) there is an r > 0 such that every filigree,
or spike, of ur(6Fy) passing through Ji_o,10,/2,0, can be eliminated to make
a new minimizing sequence {SFZ} with the same varifold limit A. (That is,
every filigree of pr (6 Fy) passing through Ji_g, 4o,/2,0, can be cut off without
changing varifold limit A.)

Proof of Lemma 6. Choose r as in (3.1). Note that

Loy—o0/2 = (J1-04+00/2: Ok)-

Hence we apply Theorem 1 repeatedly with u, (6 F) in place of 6 F, pu,(Fy) in
place of F, and each component of J; _4, y5,/2,0, i Place of U. Then we get
Fle®and 7y, Zs, - , Zn, which are homeomorphic to D such that

Nk
pr(BF) N 1—gpvo0/2.or = U Zis
i=1

(33) MT((SFICI) ~ Jl—ak+ao/2,ak C MT((SF’C) ~ Jl—dk+0'0/2,0'k‘

Hence, as in the proof of Theorem 1, we have {C,} with
Nk
UCa=1J02 = 4 (6F}) N Loy—o0/2 € 1 (6Fk) N Loy -2,
[+3 1=1

and the corresponding {Y,} with Y, C L,,_s,/2 and Yo = D. The next
step involves a slight perturbation of (J¥, Z;, holding the set p,(6F}) ~
J1 o +o0/2.0% xed, and taking points of U7X, Z; into pu, (M) ~ J1_g, 400/2,06
in such a way that each Z; is taken closely to some Y,. In this way we can
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obtain F? € & such that

(34) u'!‘(éFI?) N U3(1 — 0k + 00/2) c K1—0k+00/2,0k ~ 8K1—0k+00/210k3

(3.5) H (1, (§F) ~ s (6F)) < H? (U Ya) +6,

(3.6) H* (4, (6F2)) < H? (s (6Fy)) + H? (U Ya) +6,

for any preassigned 6 > 0. Since U, Yo C U, Ca = e (6F}) N Loy —gq/2 We
have by (3.2) and (3.3),

(3.7) H? (U Ya) <D ap(H'(Ya))? < apn?,

where a, depends on the point p and is finite because, for fixed oo > 0,
Lo, _5,/2 cannot have an arbitrarily sharp vertex. Thus, taking 6 and 7
arbitrarily small, we deduce from (3.6) and (3.7) that

lim H2(/‘r(6Fk2)) < lim H2(/‘r(6Fk))'
k—o0 k—o0

It follows from (3.5) that limg_, o |6 F2| = limg—,c0 |6 Fi|. This proves Lemma
6.

Now choose px with 7/8 < p <1 — o (assuming 0 < op < 1/8) such that
ur(6F2) is transversal to 8B3(0, px). Note that by (3.4)

pr(6F2) NOB(0, p) = pr (6FF) N OB*(0, pi) N Ky .

Hence p,(6F2)NAB3(0, pi) = Ui, Ci, where each Cf is a compound Jordan
curve on dB3(0, px). Let Y} be the open disk in dB3(0, px) corresponding to
Ci as defined in the proof of Theorem 1. Assuming gy is taken small enough,

we can deduce that if C} is null-homotopic in dB3(0, p) N K10, , then
(3.8) Vi CcoB3(0,0) N Ky g,

Let {Q},- -+ ,Q7*} be the set of all components of u, (6 FZ) N B3(0, p). Then
each component @, falls on one of the following two cases:

Case 1. All components of Qf; N&B3(0, px) are null-homotopic in B3 (0, px,)
NKig,.

Case II. A component of Qi N 8B3(0, px) is not null-homotopic.

Now we claim the following.

Lemma 7. Every component of u, (6 FZ)NB2(0, px) of Casel can be dis-
carded to produce another minimizing sequence {§F} with the same varifold
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limit A. (That s, every filigree of p, (6 FZ) passing through K,, o, can be cut
off without changing varifold limst.)

Proof of Lemma 7. Notice that if C} is null-homotopic in dB3(0, px) N
K, ,, and Ci is not null-homotopic, then Y,;" cannot be a subset of Y. More-
over if Ci C QL NAB3(0,p;) and CI C QL N AB3(0, pi), where QL is the
component of Case I and Qi is that of Case II, then Y,Z cannot be a subset
of ¥;!. Therefore we can find a suitable order C < C? < --- < Cj*, and
renumber {Q{:}lsjsak in such a way that

(i) Uik, Cf = Uik, @LnAB3(0, pi), where {Q}, -+ , Q% } is the set of all
@}’s of Case I;

(i) Uy, 41 Ch = U 4, 11 @ N OB3(0, pi), where {Qg* ™+, Q) is
the set of all Qi’s of Case II.

Similarly if we assume u,(§F2) is transversal to dB3(0,t) and let

u(6F2) N OB3(0,1) Uo ,  0<t< pg,
then we can find a suitable order Cp* < -+ < C,i‘c"t such that

L, [} ak

U Cyt = U QLN oB3(0,1), U cf= U @inaBo,).
i=1 j=1 i=Li{+1 J=Ag+1

Obviously Cy** = Cf, If* = I, and L¢* = L.

We then apply the process used in the proof of Theorem 1 (with u,(6F?) in
place of §F and U3(0,t) in place of _U, and so on) only for {C,t’t, e ’Olf’k:t}
(i.e., cutting off the components @ of Case I only) until we get pu,(6F2),
pr(6FY), - pe(6F L ), and U3(0,8) D UL, D -+ D U} 1 such that
L(t) < L,

(3.9) pr(6FpL ) ~ UR(0,8) C e (8FF) ~ U(0,1),
Gk
(3.10) p(8Fpt ) N0y = U @LinU3(0,),
J=Ag+1
z(t) Ma
(3.11) #r(6F i(t)) n (U3(0 t) ~ Uk L(t)) = U U Z;:,};a
a=1p3=1

where L(t) < L(t), Z,‘c"[; is an area minimizing surface homeomorphic to D,
and

U BZ" "“’t for some 1 < n, < LE.
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By Lemma 6 we have
(3.12) H%*(§F?) < H*(6G) + &k, for any G € &,
where ¢, — 0 as k — oo. Thus
H?(u-(8FF) 0 B3(0,1)) + H*(u(§FF) ~ B2(0,1))
< H2(ur(SF2L ) N B2(0,8)) + H2(ur (6F2% ) ~ B(0,8)) + 1,
which together with (3.9) implies
H*(u, (5FF) N B3(0,8)) = H2(u, (§Fp} (1)) N B3(0, 1)) + .
Hence by (3.10) and (3.11) we have

ZH"’ (@4 N B3(0,1)) Z H?(Q%, N B3(0,1))

Jj=1 J=Ag+1
L(t) mq Qg ]
<SIODCHAZRH+ . HAQLNB(0,1)) + rlex,
a=1p=1 F=Ag+1

or
Ax ' L(t) ma
(3.13) Y OHYQLNB0,t) < Y S HA(Z%) + rPer.
7j=1 a=13=1
Next we claim that |Uf="i Q) N B3(0,3/4)| vanishes as k — co. Note first
that there are connected subsets R}, - , RE°*) of u,(§F2) such that

Z(I’lc)
(3.14) U Rgn B30, pk) U Q. N B30, pr),
a=1 7j=1

and ORY = U;,";l GZ,‘:,‘é”‘ (= Cg=).
To justify the above claim we show that there exist nonnegative numbers
(o)

el, el with
Z(Pk)

(3.15) Z e} < rley,
a=1

such that

(3.16) H*(RZNV) < H*E) + €%,

whenever V C M and E C 9V are such that
V =~ B°,8V N RY is a nonempty compound Jordan curve in E,

(3.17) VNYP* =@, and (u,(6F2) ~ (RENV))UE = . (6G)
for some GG € ®.
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Suppose (3.16) fails; then we must have
sup{H?(Rg NV) - H*(E)} = 6,

where a = 1,--- , L(pi), ZL(” £) g > 12¢,, and the supremum is taken over
all V and E satisfying (3.17). Choose V1, --- V(o) B1a e ,Ef( o6) with
(3.18) H*(RE N Va) — H*(Ea) > B,

Z(p
(3‘19) Z 50 r Ek,

and define R,’™ = (R ~ V) U E,. Then (3.18) implies
(3.20) H?*(RY) - HX(R™) > 0.

Now we assert {R’,c H <a<I(p,) CAD be replaced by a pairwise disjoint family
satisfying (3.20). The proof of this assertion is by induction on a. The
result is trivial if L(px) = 1. Hence take L(px) > 2 and assume that
{Ry®} 1 <a<T(pe)—1 15 Dairwise disjoint. Let Ry'® be the subset of Ry
homeomorphic to D with dRy;* = 8Y**. Applying Lemma 2 of [9] to
{Rz’a}lsagf(pk) we get a pairwise disjoint family {Riia}lsasi(Pk) with
AR>* = AR>™ and H2(R}®) < H?*(R}®). It is obvious from the proof
of this lemma that {R3'*}, <a<I(p.) BiVes rise to {R:“"}ls a<(px) Which is
pairwise disjoint and satisfies

e

(3.21) H*(RZ) -~ H*(RY™) > 8,

thereby proving our assertion.
Replacing {R}}, <, <7(,,) DY {R:’a}15a<f(p,¢)’ we obtain a new funda-
mental domain G € @, that is,

L(px) L(px)
- (G )

for some G € ®. Therefore

Lipx)
H?(u, (6F2)) — H?(u,(6G)) E[m RY) — H2(RP®)).

Hence (3.19) and (3.21) give H?(u, (6 F2))— H?(uur(6G)) > rZe, contradicting
(3.12). Thus (3.16) follows.



646 JAIGYOUNG CHOE

Now let us justify the above mentioned claim. If we define fg(t) =
H%(Rg N B3(0,t)) — &%, t € [t pkl, tg = inf{t: f2(¢) > 0}, then (3.16)
with E = | Jg=2, 722 implies f@(t) < (2m) 7} (& f2(t))? because

Mea
? (U z,?,g) SH(YY) < 51;(H‘(<'>‘Y,?°‘"))2 < %(H‘(GZ*"D"’
B=1

2
< (R NI O < - (£120)
Proceeding as in the proof of Lemma 3 (Filigree lemma) we deduce that
H*(Rg N B%(0,1)) < ef,
(3.22) whenever ¢t < px — \/577?\/}72(&? N B3(0, p)).
Now by using (3.8) and (3.18) we have
H*(RZ N B3(0, px)) < HA(Y™) +ef < H*(0B3(0, p) N K1,6,) + €7
Since H2(dB3(0,px) N K1,5,) < 20kéz(,u,p)27rpk, we deduce
H*(RY N B3(0, pi)) < 4mpror©® (4, p) + € < 57000 (1, p)

for sufficiently large k& (remember %ao < 0x < 0p and px < 1 —o0y). Thus
(3.22) implies H2(Rg N B3(0,3/4)) < & provided gq is sufficiently small.
Therefore from (3.14) and (3.15) we have

LZ(p)
(U Qi nB3(0 3/4) ) = Y H*(Rg nB%(0,3/4)) < r’e.

7=1 a=1

Hence IU] *, Q. N B3(0,3/4)| vanishes as k — 00, provided og is sufficiently
small, as claimed above.

Perturbing u,(6FZ) slightly, if necessary, we can assume that ,u, (6F}) is
transversal to 8B%(0,3/4). Choose a point ¢ € Jy4,174 (= U3(0,3/4) ~
K(3/4,1/4)) and let 74 be the radial prOJectlon map from q onto dB3(0,3/4).
Then clearly we have for some ¢; < 00

Ay i Ag
’ (Wa (U QLN B, 3/4))) < ¢ H? (U QN B0, 3/4)) :

L(3/4) ma » L(3/4) 34
3 'ncn
: U U Zl(cx,ﬁ <H® U Y, and
a=1

a=1 =1

Since
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I(3/4)
U Y3t c r, U Q. N B3(0,3/4)

j=1
we have, by the above inequality,

L(3/4) Ma 3
. 2 @,3/4
pm (U U %3
a=1 f=1

It follows from (3.9), (3.10), and (3.11) that

hm |6Fk’L(3/4)[— llm |6FZ).

Define F2 = F, ,f 2{; /4y» which completes the proof of Lemma 7.

Finally we cut off the filigrees arising from components Qi ’s of Case II in
the following lemma.

Lemma 8. {F2} can be replaced by another minimizing sequence {Fji}
with the property that lim_,o |6F¢| = A, and u,(F#) N B3(0,3/4) les in a
bounded set in p,(M). (That is, every filigree of 3(u, (F?)) in u,(M) passing
through I~(3/4,,,k can be cut off.)

Proof of Lemma 8. In this lemma we assume without loss of generality
that no component of % 4, ., QL NAB3(0,t), 0 < t < px, is null-homotopic
in 8B3(0,t) N K14, since such bad components can be eliminated by cutting
(Lemma 2) and slight perturbation, thereby decreasing the area of u,(6F7).

By Corollary 2, the slice of u in B3(0,1), as defined in (3, 1.3(3)] and
denoted by {u,dist, 1), is stationary in dB3(0,1) and hence by the structure
theorem [2] the number of components of dB3(0,1) ~ spt |ju| is finite, say
¢p < 00. Therefore 3B3(0,t) ~ K1, has at most ¢, components for all
t < pk. Let Ly, -+, Lq,, dx < ¢p, be all components of 3B%(0, px) ~ K1,0,,
and L,c NS Lk'b(j’k), all components of 3B3(0, px) ~ Q). Then each Ly,
1 < m < dyg, is a subset of Li,, for some 1 <! < b(3,k), and each BL{CJ is
an individual Jordan curve of the compound Jordan curve Q}; N aB3(0, px)-
Renumbering Li,l, e ,Lf;,b( k) if necessary, we can assume that for b(j, k) +
1< 1< b(j,k), L}, € 0B3(0,p¢) N K14, and for 1 < 1 < B(j, k), Li; N

(9B(0, px) ~ K1,0,) # @. Hence §(j,k) < di < ¢p. Let Of 1o+, 0% 5

be the set of all components of B3(0, px) ~ Qk, Ax +1 < 7 < ag, which are
numbered in such a way that 5(j, k) < b(j, k) < b(j, k) and 3B3(0, px)NOY ; D
Lj, for 1 <1< b(j, k). We then note that, for each b(j, k) +1 <1< b(5,k),
Q{cr‘IOJ .1 is the image under the projection map p of a filigree of d{u,(6FF)) in
pir (M) passing through K ox.ox We are to cut off these filigrees by attaching
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each Oi,u b(j, k) +1 <1 < b(j, k), to an appropriate Oi,l’ 1 <1<b(j,k). To

do so, define O3 = Ufggf}’k)ﬂ Oy,

In our cutting and pasting arguments so far, cutting has taken place inside a
set X CC Y whose boundary X is the outermost Jordan curve of u,(6F)NY
(Lemma 2). This time, however, applying the methods of Remark 1, we cut
pr(p(F2)) along 8B3(0,¢) N OF, 0 < t < px. Let I' be the family of all
components of (8B3(0,¢t) ~ QJ ) N OL. First, suppose X € I* and note that
pr(p(F2)) ~ X is the union of two dlSJOint open sets V; and V, which are
homeomorphic to B°. Hence we paste V; to V; along a subset of 8V;NdVa ~ X
which is a common face of V; and V; other than X, to get a new fundamental
domain homeomorphic to B° (Lemma 5 assures that this pasting does not
change the topology of fundamental domain).

Secondly, more generally, u,(p(F?)) ~ Ux,e 1¢, Xi is a disjoint union of
open balls for any subfamily It, of I'* and hence it can be pasted appropriately
to give a new fundamental domain F,c im €@ Here we can arrange this
cutting and pasting process in such a way that the resulting fundamental
domain F,c im € d satisfies the following properties:

(3.23) wFr, ~m@F) c |J X
Xi€elt,

(3.24) pr(8FE) ~ pr(6F ) D O3 ,, N80, NU(0,1),1 < m < B(j, k).
Furthermore it is not difficult to arrange the above cutting and pasting process
so that

b(4,k)
(3.25) U [er(6F2) ~ ur(SF2L,)1 > QLN 0L nU3(0,2).

Now Lemma 7 implies that H2(§F7) < H%(6G) + ¢ for any G € ®, where

€k — 0 as k — 0o, so that H? (u, (6F¢)) < H2(ﬂr(5FI?;m)) + 7. Thus
H (ur (SF) ~ ur (SFEf ) < HA (e (SFES ) ~ 1o (8F)) + e

Hence (3.23) and (3.25) give
(3.26)  H*(@QLN0OLnU0,t) <b(j, k) (H2 ( U X,-) + r%k) .
Xi€l,

Since b(j, k) < ¢, we can replace b(j, k) by ¢, in (3.26).
Define

fi(t) = HHQLNOLNU0,1) — cpriex,t € [t, pi), 8 = inf{t: fI(t) > 0}.
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Then by (3.26) we have fi(t) < cpH?*(Ux, e Xi). From the isoperimetric
inequality on #B3(0,t) and the co-area formula it follows that

’p

: d . \? .
AOSZ(400) seteldnl
By applying the same method as in Lemma 3 (Filigree lemma) we obtain
HY (@, n0LNU30,1)) < cprlex

whenever

t < ok ~ 260/ M/ H2 (@) NOL N U3 (0. ).
Now using (3.26) we get
HY(QL. N0, NU0, px)) < cpH? (K16, NOB3(0, p1)) + cpr2ei.
Hence H? (Qf; n Of; NU3(0, pi)) < 47cppiok©®?(p, p) + cpr2ex. Therefore for

sufficiently large k, we have

H2(Q,N0LNU3(0, px)) < 57¢p000° (i, p).

Thus we obtain H 2(Qﬂc ﬁOi NU3(0,3/4)) < cpr?e, provided og is sufficiently
small. Hence |@} N O}, NU3(0,3/4)| vanishes as k — oo. Then, by using the
projection map 7, as in the proof of Lemma 7, we see that
(3.27) H?(0,N8B%(0,3/4)) = 0 as k — co.

By the assumption at the beginning of this proof each component of

(U 0} naB%(, 3/4)) ~ e (6FF)
J
is homeomorphic to D. Hence u,(p(F¢)) ~ (U, 0l N 3B3(0,3/4)) ~ U, Vi,
Vi ~ B°. Now, pasting |J; O} N U3(0,3/4) to U%(0,3/4) ~ U, 0% in an
appropriate way and performing, if necessary, more pastings inside u,(M) ~
U3(0,3/4), we can get Fi € ® such that
(3.28) ur(6FE) ~ pr(8FF) < | 0L n0B°(0,3/4),

J

R ) ()

encloses no domain in U3(0, ). Note however that (u,(§F2) N B3(0,3/4)) U
(U; Oin3B3(0,3/4)) encloses domains which are subsets of { J; O;NB>(0,3/4).
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By (3.27) and (3.28) we have limy o0 [6 Fy¢ | = limy—o |6 F3|. Thus we see that
no spike, or filigree, of 3(u,(F})) in ur (M) can come into U/3(0,3/4). Hence
B3(0 3/4) ~ ur(6F2) has only finite components, and therefore u.(Fi) N
B3(0,3/4) lies in a bounded set in u,(M). This completes the proof of Lemma
8.

Finally we are in a position to finish the proof of Theorem 2. In Lemma &
r depends on p, say, r = r,. By compactness of M there exists a set I of a
finite number of points in M such that {U3(q,3/(47r4)}qer covers M. Hence,
applying Lemma 8 repeatedly at all points of I, we deduce that {F{} must
be uniformly bounded in M provided N Fr #<.

Now remember that we assumed at the beginning of the proof of Theorem
2 that M is locally isometrically in R3. However we can easily see that if M is
not locally in R3, all the methods we have used so far are directly applicable to
the images under the exponential map (i.e., exponential image of the tangent
cone u, exponential image of K, 5, etc). Hence the proof is complete.

The following corollary says that A (= limg—,0 {6 F[) is an area minimizing
integral varifold in M and is regular in a neighborhood of any point of spt ||A||
where there is a varifold tangent with support contained in a plane. (By
rectifiability there is such a tangent plane at almost all points of spt ||A][.)

Corollary 3 (a.e. smoothness). If A is the varifold limit of a mini-
mizing sequence in Bq ( or ®), and has a varifold tangent u at p € spt||Al|
with spt ||u|| C H, where H is a plane, then there is an r > 0 such that
IALB3(p,7) = ||n|S|||, where n is a positive integer and S is a smooth
(analytic if the metric of M is analytic) oriented connected minimal surface
containing p.

Proof. Since spt||u]| is a plane we deduce from (3.29) that each com-
ponent of u,(6F¢) N B3(0,3/4) is homeomorphic to a disk, and hence each
component of u,(6F2) N 8B%(0,3/4) is a circle which is not null-homotopic
in 8B3(0,3/4) N K1 5,. Then by using the arguments in [4, Theorem 2], we
conclude the required result.

4. Fundamental domains with least boundary area

Since now we have a uniformly bounded minimizing sequence of fundamen-
tal domains, we can show the existence and regularity of fundamental domains
of M which minimize boundary area among all fundamental domains in ®g.

Given a continuous map g on M we define § to be a map on M satisfying
pg = gp. Of course § is not unique, but its uniqueness is not necessary in our
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setting. For a function A on M we define the function h™ on M by

WMz)= Y h{y), zeM.
yer~1(z)

Thus A™ is well defined only for a restricted family of functions & on M. If
F is a fundamental domain of M, then (xr)¥ = 1 almost everywhere in M,
where xp is the characteristic function of F on M. Also if H2(dF) < oo,
then we can easily see that xr is a BV function on M. Since 8*F represents
“actual” boundary of F', we may think of |Dxp|(M) as the boundary area of
F (recall |Dxp|(M) = H2(9*F)).

Let I = inf{H?(3"F): F € ®} and let {F} be a sequence of fundamental
domains in ®, such that H?(3*Fx) — I. Then by compactness of BV func-
tions [11, 6.3] there are a subsequence {xr;} C {Xxr,} and a BV function u
on M such that

Xr; —~u in Ll (M),  |Du|(M) < lim inf|Dxr (M) (=1).

u is obviously a characteristic function x» of some set F on M. By Theorem
2 the sequence {F|} can be assumed to be uniformly bounded in M. Hence

1= (xr)™ = (xp)™ i Lise(M).

It follows that F itself is a fundamental domain of M and H%(8*F) =1I.
Now the following questions about F arise:
(a) Is p(8*F) locally area minimizing under a Lipschitz map on M?
(b) Is F connected?
If both questions are answered affirmatively, then F is the desired fundamental
domain with least boundary area.
Question (a). Let k be a C! map on M (or M), and h a function on M
(or M). Define the function h* on M (or M), by

REz) = > w(y)h(y),
y€k~1(z)
where
1 if k is orientation-preserving at y,
w(y) = ¢ —1 if kis orientation-reversing at y,
0 if Jk(y) =0, where Jk is the Jacobian of k.
Note that even if k is Lipschitz, * is defined almost everywhere. Let g be a

Lipschitz map on M such that {z: g(z) # z} U g{z: g(z) # z} is contained
in a small ball in M. Then by the above definition it is not difficult to check
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that ((xr)9)™ = ((xr)™)? = 19 = 1 a.e. on M, and therefore also to show
that there exists a fundamental domain F,; of M such that

spt | Dxr,| C spt|D(xr)?|.
Since spt |D(xr)%| = §(spt |Dxr|) = §(0* F), we have
H?(p(8" Fy)) < H*(p(§(0*F))) (= H*(9(p(8" F)))),

or H%(p(8*F)) < H*(g(p(8*F))). Therefore p(8*F) is locally area minimiz-
ing.

Note. J. Taylor’s arguments in [13] might be true even if one assumes that
all the Lipschitz maps in [13] are nowhere orientation-reversing. In this case
the interior of g(F) is clearly a fundamental domain of M.

Question (b). Suppose F is not connected. Then there are two com-
ponents U, V of F and subsets X, Y of dU, dV respectively such that
p(U) Np(V) = p(X) = p(Y) and H?(p(X)) > 0. Hence there must exist
a translation 7 on M for which 7(X) = Y. It follows that (F ~ U) Ur(U)
is a fundamental domain with less boundary area than F'. This contradiction
proves the connectedness of F.

Let v be a diffeomorphism from B3(p,r) C M, p € §F, to B3(0,r) C
R2, and let F be the measure over R® corresponding to H? over M un-
der v, ie., F(v(S)) = H?(S) for any H? measurable subset S of M. Then
v(6F) (= v(p(0*F))) is locally F-minimizing under Lipschitz deformation
in the sense that for any Lipschitz map ¢ on M with {z: ¢(z) # z} U

#{z: ¢(z) # z} C B3(p,r) we have
F(v(6F)) S F(v(¢(6F))).

On the other hand one can find a function £(r) = Cr* with 0 < C < oo and
0 < @ < 1/3 such that '

H*(v(6F NW)) < (1+&(r)) HA (v(¢(6F NW))),

where W = {z: ¢(z) # z} and r = diam(W U¢(W)). Hence v(6F) is (M, &, )
minimal as defined in {13, I. (8)].

Thus by [13, 11.4, 11.6, IV.5, IV.8] we get the following theorem.

Theorem 3. There exists a fundamental domain F € ®g with least
boundary area among all elements of ®y. Moreover,

(i) 6F =R(6F)Uoy(6F)Uor(6F);

(ii) or(6F) consists of isolated points;

(iii) oy (6F) is a one-dimensional C1* submanifold;

(iv) R(6F) is a smooth minimal surface;
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(v) for every p € oy (8F) (respectively o7(6F)) there is a neighborhood
N of p and a CY%/? diffeomorphism f: B — N such that SF NN = f(Y)
(respectively f(T)).

Remark 2. Suppose M is a covering space of M which is not necessarily
the universal covering space M of M. We define a “fundamental domain” F
of M in M as we did in M. Then we can again conclude that there exists
a fundamental domain F in M with least boundary area and satisfying the
regularity results (i)-(v) of Theorem 3. Obviously the proof of Theorem 3
remains valid for fundamental domains in M.

As for the two-dimensional compact Riemannian manifold M2, we get the
following proposition concerning the existence, regularity, and topology of
fundamental domains with least boundary length.

Proposition. There exists a fundamental domain F of M? which mini-
mizes boundary length among all fundamental domains of arbitrary topological
type with the properties that

(i) F is homeomorphic to a closed disk;

(ii) F is a polygon such that the edges of F are geodesic segments in M,
interior angles of vertices of F are 120°, and if x(M?%) < 0 then the number
of vertices of F (= the number of edges of F) is equal to 6 — 6x(M?).

Proof. Note that a minimizing sequence of connected fundamental do-
mains of M? must be uniformly bounded if they have nonempty intersec-
tion. Therefore we can proceed as above, using characteristic functions of
fundamental domains, to conclude that there exists a connected fundamental
domain F with least boundary area. Suppose F is multiply connected, and
Ji ~ D is a component of M? ~ F with H2(J;) < co. Then there exists a
translation 7, on M? such that 7y (F) C Jy. Since r{(F) is multiply connected,
we have a component J; =~ D of J; ~ 71(F) and a translation 73 such that
79(F) C Ja. Continuing this process we can get translations 7y, 72, 73, - - such
that the fundamental domains 7 (F), 2(F), 73(F), - are subsets of J; and
pairwise disjoint. This is not possible since H?(J;) < oo. Therefore F ~ D.

The first part of (ii) follows from the fact that 6 F is locally area minimizing
under a Lipschitz map. Now we note that a straight line and Y'! are the only
area minimizing (under the Lipschitz map) 1-varifolds up to rotation (see [13,
11.3.]). Hence we deduce the second part of (ii). For the third part of (ii) we
recall the Gauss-Bonnet formula,

KdAz—/ Ko ds + a; — ) + 27,
/| oot L=

where K is the Gaussian curvature of M (or M), kg, is the signed geodesic
curvature of dF, and oy, -- ,c, are the interior angles of vertices of F.
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Since [ KdA = {,,, KdA = 2rx(M?) and k, = 0, we obtain 2mx(M?) =
—nw/3 + 27, which gives the last part of (ii).

5. Regularity of singular set

In this section we show the existence and regularity of a fundamental do-
main in @ with least boundary area. Without loss of generality we assume,
in Lemma 9 and Corollary 4, that M is locally isometrically in R® and that
for any p € spt ||A]| we choose p to be the origin in R®.

~ So far we have not ruled out the possibilities that u,(6Fg) N B3(0,3/4)
might have more than one component, and that the tangent cone u of A at
p € spt ||A|| might be other than |D|, |Y|, or |T|. The following lemma rules
out these possibilities.

Lemma 9. For anyp € spt ||A|| the tangent cone u of A atp is|D|, Y|,
or |T.

Proof. Suppose p,(6F¢) N B3(0,3/4) has more than one component for
sufficiently large k. Then we can find a component Q. of u, (6 F2)NB3(0,3/4)
for each k and a cone 7 such that lim, e ko0 |@%] = 7, spt||7|] C spt x|,
and 7 # p. If spt]r|| were not a plane, then we could construct a diffeo-
morphism of B fixing @B which would decrease not only the mass of 7 but
also the area of u,(6F3) for large r and k, an obvious contradiction. Thus we
conclude that if u,(6F¢) N B3(0,3/4) has more than one component for large
k, then g =m|D|, m > 1.

Next assume that w,(6F¢) N B3(0,3/4) is connected for large k. Then
we know from the construction of u,(6F7) (Lemma 8) that u = |spt|u|||.
Assume that spt ||u|| # D, Y, T. First, if spt ||u]| is one of those seven cones
which are proven to be not area minimizing under Lipschitz deformation in
[13, I1.3], then we note that every Lipschitz map ¢ constructed in [13, I1.3] for
each non-area-minimizing cone v satisfies the property that each component
of U3(0,1) ~ 9(spt ||x}]) is homeomorphic to B° and

H?(y(spt {lvll) N B%(0,1)) < H*(spt [|v[| N B3(0, 1)).

Hence it follows that for large r and k, we can similarly construct the Lipschitz
map ¢ on u.(M) which leaves u, (M) ~ B3(0,1) fixed such that

( (M) ~ (s (5F8) ~ B° and
H2(Y(ur (5F2))) < M{prpA) < H (1, (8F2)),

an obvious contradiction. Second, if spt ||u|| is different from those cones of
[13, I1.3], that is, its intersection with B3(0,1) is a 1-varifold with multiple
points other than triple point (i.e., quadruple point, etc.), then, in view of a

(5.1)
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Lipschitz map on 8 B3(0, 1) which squashes a quadruple point to become two
triple points and decreases the length of spt ||u|| N8B3(0, 1), we can construct
t satisfying (5.1) more easily than in the above case. Therefore spt || x|l must
be equal to D, Y, or T, and hence, we deduce that u = |D|, |Y|, or |T| in
case pu,(6F) N B3(0,3/4) is connected for k large.

We now note that by Corollary 3 the density of R(A) is constant in a
component of R(A), and the boundary of this component contains the points
of oy (A). Hence we deduce that if 4 = m|D] along a component of R(A),
then m must be equal to 1. Therefore we conclude that u,(6F¢) N B3(0,3/4)
is connected for large k, and p = |D|, |Y], or |T}.

The following corollary and its proof are almost similar to {13, IL.6].

Corollary 4 (C° regularity of multiple curve). (1) or(A) consists of
1solated points.

(2) oy (A) is a one-dimensional C° submanifold.

(3) Suppose p € oy (A) (resp. or(A)). Then for some r > 0, R(A)N
B3(p,r) consists of three (resp. siz) components, each of which is a smooth
manifold.

Proof. (1) This conclusion follows from monotonicity (Lemma 4) and the
weak convergence to tangent cones as varifolds.

(2) It is not difficult to see that Lemma IL.5 of [13] holds in our setting
with p;(spt [[A[[) in place of S;. Hence

HD(oy (urrp(spt Al N B2 (p,3/4))), o (¢(Y)))

(for some ¢ € SO(3) depending on p) goes to zero as r goes to oo for each fixed
p € oy (A) and is uniformly small as a function of p in small compact subsets
of oy(A) for fixed r > 0. Therefore the set oy (A) satisfies Reifenberg’s
condition in §4 of [10], and is hence a one-dimensional C° submanifold.

(3) This follows from Corollary 3 and [13, I1.6(4)].

An epiperimetric inequality is an inequality which gives us an upper bound
to the area of area minimizing surface. This upper bound of area gives us
C1* regularity of area minimizing surface at its singular set. The statement
and the proof of epiperimetric inequality basically follow [13]. Before stating
the following lemma we should note that the competing surfaces of A are not
only the images of A under diffeomorphisms but also all the varifolds I' with
I' = limg_, o0 |6 F;|, Ff, € . We note also that M is no longer assumed locally
isometric to R3. However, using the diffeomorphism from B3(p,r) C M to
B3(0,7) ¢ R3, we equip M N B3(p,r) with the metric v*g, where g is the
Euclidean metric of R3.

Lemma 10 ( Epiperimetric inequality for A). There exist e > 0, ¢ > 0,
and k > 0, such that if
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(i) p € oy (A) (respectively or(A));
(ii) for some r > 0,

r=H?(spt | All N B3(p, 7)) — 70%(A,p) <,

and
HD(p1/,7p(spt [|Al N B%(p, 1)), 8Y) < ¢

(respectively, replace 8Y by 0T) for some 0 € SO(3), then there ezists a 2-
vartfold T with T = limg_, o |6F}| for a sequence {F}} in ® such that

(1) spt Tl ~ B3(p,r) C spt||A]| ~ B3(p,r) and

(2)

H?(spt||IT|| N B3(p,7)) < (1 k/2)(r/2)H* (spt || All N 0B (p, 1))
+ (k/2)7r?©2(A, p).

Proof. First, we prove the lemma under the assumption that spt ||Al| N
AB3(p, r) consists of a finite number of Lipschitz curves and is homeomorphic
to Y N OB (resp. T NOB). Define J = spt{|A|| N IB3(p,7). Let {¢n} be
a sequence of shrinking diffeomorphisms in B3(p,r) with ¢,(z) = z, z €
dB3(p,r) for all n such that lim, o ¢npeA = [p3xJ|. From [12, Chapter 3]
and [13, II1.5] one observes that there exist ¢ > 0, ¢ > 0, and k£ > 0 such
that if (i) and (ii) are satisfied then one can find a diffeomorphism ¢ with
{z: ¢(z) # 2} Uy{z: ¢(z) # z} C B3(p,r) such that

H2(y(pxJ)) < (1= k)(r/2)H'(J) + knr?©2(A, p).

In fact, the Lipschitz maps in [12, Chapter 3] can be replaced by diffeomor-
phisms since the Lipschitz maps there count multiplicity of area. Since by [3,
1.2.6] the mapping of the sequence of varifolds {¢,xA} by ¢ is continuous,
we have :
Jim Yudnpd =Yy Nm ¢upl = Py lpx|.
Hence

Jim [[(¥én)# AU (p, 7)) < (1~ k) (r/2)H' (J) + knr©%(A, p).
Therefore for sufficiently large n,

1(¥8n)# AU (p,1)) < (1 = E)(r/2)H (J) + §hnr©2(A, p).

This proves conclusion (2) with & replaced by %k, T = (Yon)2A, Fl = 1/3q~5an,
and conclusion (1) follows from the choice of ¥ and ¢y,.

Secondly,we prove the lemma under the assumption that spt [[A||NGB3(p, )
(= J) consists of a finite number of Lipschitz curves. Let K be the subset
of J as defined in [13, III.4] such that K is homeomorphic to Y N dB (resp.
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T N 8B). Then we get open components U!, U?, U (resp. U!,---,U%)
of U3(p,r) ~ (px%K). Now we apply a replacement argument as in The-
orem 1 to each U' and Fi. For this lemma we make one alteration to
the proof of Theorem 1. For each U' we define K!, ij as in Theorem 1.
But we let X}, be the component of JU* ~ Cj; which contains the set
Z' = {z € 9U": dist(z,pK) > ¢}. Then we define Y}, = 9U' ~ )_(ijl and
proceed from here exactly as in Theorem 1. Hence we get F,?(= Fy), Fkl, F,?,
F? (resp. FQ, -~ ,F}) € ® with

(5.2) bFL~U'C6F ' ~U',  1=1,2,3 (resp. 1,--- ,4).

Also, if we define U,‘, = {z € U': dist(z,8U") < n}, we can arrange replace-
ment procedure in such a way that 6Ff N U' C U}, for any n > 0. Hence
letting n — 0 we obtain
spt || lim [6F{NU'||| C 8U".
k—o00

Moreover we may assume that for each component E of §F} NU', H%(E) is
arbitrarily close to H2(Z), where Z is the subset of U! with Z = dE and
ZNZ' = @. Then it follows from (5.2) that since A has density 1 almost
everywhere the varifold limg_.o |6Ff| also has density 1 almost everywhere
for each /.

Let A’ = limg_, o0 [6FZ| (resp. limg—oo [6F¢]). Note that the boundary of
spt ||A")|NU3(p,7) is K. Hence the arguments of the first case is applicable to
spt ||A’)| N U3(p,r) and therefore there exist diffeomorphisms ¢, and ¢ such
that
(5.3)  N(¥a) A (U3 (0, 7)) < (1 - §K)(r/2)H' (K) + 3knr?0%(A, p).

On the other hand, [13, 111.4(4)] implies

(5.4) H*(spt||A")| N 8B%(p,r)) < 25(H'(J) - H' (K)J.

We note however that for any set F in a thin strip with width 2¢r we can use an
isoperimetric inequality H?(E) < ¢rH!(OE) instead of H%(E) < [H!(8E)}2.
Hence (5.4) can be replaced by

(5.5) H?(spt | A’ N8 B3 (p,r)) < S¢r[H'(J) — H(K)].

Since |spt [|A’|| | = &7, (5.3) and (5.5) yield

H?(spt [|(906n) 2 A" N B3 (p, 7)) < (1 — §k)(r/2)H'(K)
(5.6) + 5¢r[H'(J) — H'(K)] + $knr?©%(A, p).
Let us assume without loss of generality

(5.7) 5¢ < (1-2k)3.
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Then (5.6) gives us
H?(spt [|(wn)# A"l N B3(p, 7)) < (1 - §k)(r/2)H'(J) + $knr?0%(4, p),

which proves conclusion (2) with F} = Vo F2 (resp. PnFE). Conclusion
(1) follows from (5.2) and the choice of v, ¢p,.

~ Finally it remains to prove the lemma with no assumption, i.e., without the
assumption that J is piecewise Lipschitz. So J needs to be approximated by a
finite number of Lipschitz curves. By Corollary 4, there exists r, > 0 for each
q € oy (A)NIB3(p, ) such that oy (A)NAB3(p,r)NB3(g,r,) = {q}. Let J, be
the component of spt || A||N8B3(p,7)NB3(q,r,) containing g. Then we replace
Jq by the union of three geodesic curves GLUGZUG?S in B3(p,r)N B3(q,r,)
connecting ¢ to the three points {q1, 92,93} = J;, N8B3(q,74). We assume r,
to be appropriately small so that for sufficiently small n > 0,

(5.8) H? (U Zq) <,

where Z, is the small region on dB3(p,r) enclosed by J, and GLUG2 UGS,
and the union is taken over all ¢ € oy (A)NAB3(p,r). Let V!, V2, V3 be open
components of px[dB3(p,r) NU3(q,7q) ~ (G} UGZUGE)] ~ dB3(p,7). By
cutting off filigrees of {§ Fy} (applying Lemma 6 repeatedly at suitable points
of spt ||A]|) we can find three open balls W}, W2, W2, which are disjoint from
6 Fy, for all k such that

Winov] ~D, W novinaB3(p,r)noB3(q,ry) #0, [1=1,23.
Then we apply the replacement argument of Theorem 1 to each Vql and Fj
with the same alteration as in the second case: For each component C;; of
6F N9V}, define Y;; to be the subset of IV} ~ W_fl such that ¥;; ~ D and
dY;; is the outermost Jordan curve of Cj; in 9V} ~ sz. Then, as in Theorem
1, we obtain FZ%(= Fy), FP', FY2, F® with

SFP' ~VICSFH ~v)h 1=1,23
Using the same arguments as in the second case we can assert that

spt|| lim ISFF V| c oV}

and that the density of limg_ oo |6F,g’1| is 1 almost everywhere for each ! =
1,2,3.

Continue the above process for the sequence of points {q,--- , P} = gy (A)N
dB%(p,r) until we obtain A = limk_ oo |6 F} %] Then we note that the bound-
ary J' of spt ||A]| N U3(p, r) is piecewise Lipschitz. By finding the subset K’
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of J' which is homeomorphic to Y NdB (resp. TNAB) and using the replace-
ment argument as in the second case above, we can construct a 2-varifold A
such that A = limg_, o [6Fk|, 6F; € ®, A has density 1 almost everywhere,

spt [|A[| ~ B(p,r) C spt Al ~ B3(p,7),
the boundary of spt ||A|| N U3(p,r) is K’, and lastly, from (5.8),
(5.9) H2(spt Al n0B%(p, 7)) < n + 5¢r[H(J) — H(K')].
Hence, as before, we can find diffeomorphisms ¢,,, ¥ such that
(5.10)  [I(¥a)#AI(U3(p,7)) < (1= 3R)(r/2)H' (K') + $knr?©%(A, p),
which together with (5.7), (5.9) implies
H?(spt || (Wén) A 0 B3(p,7)) < (1 - k/2)(r/2)H(J) + (k/2)7r?©% (A, p),

where 7 is absorbed by replacing %k by k/2. This completes the proof of
Lemma 10.

Recall the diffeomorphism v from B3(p,r) C M to B3(0,r) C R?® which
was introduced in §4. If M is given the Euclidean metric which is pulled
back by v, then one can find a function £(r) = Cr® with 0 < C < oo and
0 < a < 1/3 such that

H?(spt | Al nW) < (1+€(r))H?(spt [T N W),

where T is as defined in Lemma 10, W = (spt ||A|| ~ spt|IT||) U (spt ||T|}| ~
spt||Al|) and r = diam W. This property of A is similar to (M, £,6) mini-
mality. Therefore we note that the above epiperimetric inequality holds, as
[13, IIL.1], for A having this property (not just for area minimizing A). The
following epiperimetric inequality is similar to [13, III.1] and slightly weaker
than Lemma 10.

Lemma 10'. There ezist 0 < e <1/2,0<¢ <1/100,0 < k < a/(1+0a),
and 1 < [ < oo, such that if

(i) p € oy (A) (resp. or(A));
(if) for somer >0, r=2H?(spt |A[NB3(p, 7)) exp(2£(r)) — 1O%(A,p) <
g, and HD(u1/,7p(spt ||| N B3(p,7)),0Y) < ¢ (resp., replace Y by
0T) for some 8 € SO(3),
then there exists a 2-varifold T with T = limg_, o |0 F}|, F € ® such that
(1) spt Tl ~ B3(p,r) C spt ||Al} ~ B3(p,7) and
(2) r=2H?(spt ||T[| N B%(p, 7)) exp(3&(r)/ ) ~ 7O*(A, p) < (1—k/2)E(r)+
IE(r), where

E(r) = (2r) " H'(spt || All N 9B3(p, )) exp(3€(r) /) — mO2(A, p).
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Proof. Multiplying conclusion (2) of Lemma 10 by exp(3€(r)/a), we get
H*(spt Tl N B(p, 7)) exp(3€() /)
< (1-k/2)(r/2)H" (spt |Al| N 0B (p,)) exp(3£(r) /)
+ (k/2)mr*%(A, p) exp(3€(r)/a).
The above conclusion (2) is equivalent to
H*(spt [T N B%(p, 7)) exp(3€(r)/ )
< (1= k/2)(r/2)H (spt | A N OB (p, 7)) exp(3€(r) /)
+ (k/2)7r?0% (A, p) + Ir?E(r).
Hence it suffices to show
(k/2)mr?0%(A, p) exp(3€(r)/a) < (k/2)7r?@2%(A,p) + Ir2€(r).
Since e < 1+ Az for A =30 and 0 < z < 10, we have
exp(3&(r)/a) <1+ A(3¢(r)/a) for 3/10< a<1/3and 0<r<1.
Therefore
(k/2)mr?@°(A, p) exp(3€(r) /)
< (k/2)7r?0%(A,p) + (k/2)7ri0%(A,p)3AL(r)/a
< (k/2)7r*0% (A, p) + Ir?€(r)

for Il = 324, and hence the required result is proved.

Theorem 4 (C*® regularity of singular set). (1) At every point p in
sptllAll, A has a unique tangent cone.

(2) oy (A) is a one-dimensional C1® submanifold.

(3) In a neighborhood of p € oy (A) (respectively or(A)), spt(|A|] is the
union of three (respectively six) C'*/2 manifolds with boundary.

Proof. Chapter IV of [13] proves the above regularity for sets which are
(M, £, 6) minimal under the Lipschitz map. Remember however that compet-
ing surfaces of spt [|{A|| are not the images of spt||A[| under Lipschitz maps
but are the varifolds which are the limit of |6 F%| for some sequence {F%} in
®. We outline below the alterations to the proof in §IV of [13] that need to
be made to accommodate this.

First notice that {13, II.1, I1.2, 1.4, 11.6, and III.1] correspond to Lemma
4, Corollary 2, Lemma 9, Corollary 4, and Lemma 10’ respectively. [13, IL.5]
holds in our setting if we replace S; by u;(spt|A]l).

[13, IV.1]: Use (M, £,8) minimality of spt [|A|| as is described right before
Lemma 10’, and then apply Lemma 10/'.

[13, IV.4(2)]: Lipschitz maps f and g can be replaced by diffeomorphisms
with the same property.
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[13, IV.7(1)]: Lipschitz maps considered here can be replaced by a Lips-
chitz map ¢ which preserves the topology of Fy, i.e.,, M ~ ¥(6F;) ~ B°,
limk_,oo ‘5Fk1 = A.

Theorem 5. If M is irreducible, then there exists a fundamental domain
F in @ with least boundary area among all elements of @, i.e., §F = spt |A|l.

Proof. In view of Theorem 1. (2) (ii)’, it is clear that, for any convex
domain U C M disjoint from the singular set of spt||Aj|, each component
of spt||A|| N U is an area minimizing disk. Since spt ||A|| is C1*/2 up to
its singular curve, there exists a d > 0 such that there is a C! retract ¢
of Ay = {z € M: dist{z,spt||Al|) < d} onto spt|A||. Then we can apply
Lemmas 6, 7, and 8 repeatedly at an appropriately chosen set of finite points
of spt||A|| {using a finite open subcover of M) in such a way that for each &k
we obtain Fp € ® with

(5.11) 6Ff C Ayjr and Jim |6F2| = A.
—00
Letting k — oo, it follows from (5.11) that
tu(m (M ~sptAfl)) =0,

where 7 is the inclusion map into M. Hence M ~ spt||A|| = p(F), or
sptJA|] = é6F for some fundamental domain F in ®q. Let x; be a map
from B onto M with kx(8B) = 6§Fp. Then, for k with 1/k < d, £xx maps
OB into spt ||Al|. From (5.11) we know that £xy is surjective. Now we claim
F is in ®. First suppose F is not connected and a component of F is not
homeomorphic to B°. Then, since B is mapped onto spt ]|Al|, there exists a
connected subset X of spt||A|| such that two disjoint subsets X; and X, of
8F? are mapped onto X by £. Assume X is the largest such component. If
X is a point or a curve, then the tangent cone of A at any point of X cannot
be |D|, |Y|, or |T|. If X is a surface, then the tangent cone at any interior
point of X is a plane with density 2 (= 2|D|). Since this contradicts Lemma
9, each component of M ~ spt ||A|| must be homeomorphic to B°.

Suppose M ~ spt{|A| = Ui, Wi, n > 2, W, ~ B°, and W, nW,; = & if
1 # 7. Then, using irreducibility of M, we paste W,’s to each other in such a
way that we can obtain W =~ B° with | JI_, W; C W and W C spt ||A||. This
is a contradiction since W gives rise to a fundamental domain F € @ with
p(F) =W and H2(6F) < M(A). Hence M ~ spt || A must be homeomorphic
to B°. Clearly F is not reducible. Therefore F € ®.
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Appendix

1. Given a flat T2, not necessarily a square torus, we know from the
proposition of §4 that a hexagon is a minimizing fundamental domain of the
T?2. Cut this hexagon along the dotted lines AB and AC (Figure 8).

After translating and pasting, we get another fundamental domain which
is a parallelogram ABCD (Figure 9). Note that the boundary length of the
minimizing hexagon is twice the sum of the lengths of EB, EC, ED, and
that E is a triple point joining the vertices of the acute triangle BCD. Since
there exists one and only one triple point in an acute triangle we conclude
that there exists a unique minimizing fundamental domain of flat T2 up to
translations.

2. The standard projection map 7 from S2? x S! onto S? is an area-
decreasing map: for any H2-measurable set X ¢ S? x S1,

H*(X) > H?(n(X)).

Moreover, for any fundamental domain F of S? x S! in ®y, m maps p(0F)
onto S2. Hence

H*(p(oF)) 2 H2(7r(P((9F))) = H*(8%) = H?(p(3(5? x (0,1)))).

Thus S? x (0,1) is a minimizing fundamental domain of §? x S?.

3. 100 years ago, Sir William Thomson [14] considered a similar problem,
periodic minimal partitioning of R3. His construction gives a candidate for
the periodic division of R® with minimum partitional area. But it has never
been proved that his partitioning is the minimum. This candidate is a 14-
faced domain whose boundary consists of six quadrilateral faces and eight
hexagonal faces. This domain can be roughly obtained by truncating all
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vertices of regular octahedron. Here quadrilateral faces are flat, hexagonal
faces are a monkey saddle, and each edge is a plane curve. The faces meet
with the correct 120° angles along the edges and with the correct tetrahedral
angles at the vertices. It turns out that Thomson’s domain is a fundamental
domain of a skew torus which is spanned by 4~1/3(2,0,0), 4-1/3(0,2,0), and
4-1/3(1,1,1). We should mention that R. Kusner showed 14 is a lower bound
for the number of faces of a minimizing fundamental domain of any flat torus.
Notice that minimal partitioning of R? is more general than periodic minimal
partitioning of R3, and these two partitioning problems are more general
than the problem of finding a minimizing fundamental domain of a specific
flat torus.
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